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Abstract—Current malware is often transmitted in packed or
encrypted form to prevent examination by anti-virus software.
To analyze new malware, researchers typically resort to dy-
namic code analysis techniques to unpack the code for exanan
tion. Unfortunately, these dynamic techniques are susceifile to
a variety of anti-monitoring defenses, as well as “time bomg”
or “logic bombs,” and can be slow and tedious to identify and
disable. This paper discusses an alternative approach thagelies
on static analysis techniques to automate this process. Ab
analysis can be used to identify the existence of unpacking,
static slicing can identify the unpacking code, and control
flow analysis can be used to identify and neutralize dynamic
defenses. The identified unpacking code can be instrumented
and transformed, then executed to perform the unpacking.
We present a working prototype that can handle a variety of
malware binaries, packed with both custom and commercial
packers, and containing several examples of dynamic defees

Keywords-malware; analysis; static unpacking; dynamic de-
fenses
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worm (or a new variant of an old one) works, it is necessary
to reverse engineer its code. If the code is packed, then it
must be unpacked as part of this reverse engineering process
In some cases, it may be possible to use syntactic clues
to identify the packer used on a program [1]. If a known
unpacker exists, such as for many commercial packing tools
like UPX [2], [3], it can be used to unpack the file. However,
malware writers can close this obvious hole by deliberately
altering the “signatures” of the packer in the packed bipary
or by using their own custom encryption and decryption
routines. When confronted with a malware binary packed
with an unknown packer, therefore, researchers rely almost
exclusively on dynamic analysis techniques to identify its
code, e.g., by running the malware binary under the control
of a debugger or emulator [4], [5], [6].

Unfortunately, these dynamic techniques have a number
of shortcomings. Execution of malware code may allow the
malware to “escape.” In some cases, elaborate infrastruc-
ture is required to prevent this, e.g., dynamic analysis of

Recent years have seen explosive growth in attacks obluetooth-enabled devices carried out in a giant Faradge ca
computer systems via a variety of malware such as virusesp prevent accidental infection through wireless transmis
worms, bots, etc. Computer system security has accordinglyion [7]. Dynamic techniques are also tedious and time-
become an increasingly important concern, and a varietgonsuming [8]. New malware can spread very quickly [8],
of products, such as virus scanners, have been developedd the more time it takes to analyze these new threats,
to detect and eliminate malware before they can do anyhe longer the threat can spread unabated. Finally, and most

damage.

importantly, dynamic analyses are vulnerable to condéion

Modern malware are typically transmitted in “scrambled” execution of the unpacker routine. Malware may deploy anti-
form—either encrypted or packed—in an attempt to evadelebugging and anti-monitoring defenses [9], [10], [11R][1
detection. The scrambled code is then restored to the atiginand skip the unpacking routine if it finds its execution is

unscrambled form during execution. Heemcryptionrefers

being monitored, or it could be designed to execute only

to the use of some kind of invertible operation, togetherunder certain environmental conditions, such as a paaticul

with an encryption key, to conceal the malwaRacking

date.

refers to the use of compression techniques to reduce the These problems with dynamic analysis motivate our

size of the malware payload, which has the side effect osearch for an alternative approach to identifying the code
disguising the actual instruction sequence. The distncti generated when a packed malware binary is unpacked. Our
between these approaches is not typically important for ouoverall goal is to use static program analyses to construct
purposes. Hence, both will be referred to generically asletailed behavioral models for malware code, which can then
“packing.” The code used to transform the binary to itsbe used by security researchers to understand varioustaspec
scrambled form is referred to asgpacker and the code that of the behavior of a malware binary: how the code for a

undoes the scrambling is called thapacker program may change as it executes; the control and data flow

The use of packers poses a problem for security relogic of the various “layers” of the binary that are creatgd b
searchers, because in order to understand how a new virus sccessive unpacking operations; and the static and dgnami



Instr | Address | x86 assembly code

the bytes at a memory address may be used for both [13].
0x401000: | {...encrypted malware body .}.

Hence, it may not be possible to tell which memory writes

Io 0x4064a8: | movl %edx « $0x152a target code, gnd whic;h moQify datq. Some research.er.s have
I, 0x4064ad: | movl %eax — $0x401000 addressed this question using heuristics, e.g., by comside
I, 0x4064b2: | movl %esi — $0x44b3080 all writes to the text section of a binary as a code mod-
I3 0x4064b7: | subl g%ea}x) — %esi ification [14]. This approach does not always work, since
Iy | 0x4064b9: | addl %esi — $0x2431400 code can be generated in memory regions other than the
Is 0x4064bf: | addl %eax «— $4 . he d . he h d th
I 0x4064c2: | decl %edx text section, e.g., the data section or the heap, and the text
I, 0x4064c3: | jne .-Oxc section can contain embedded data whose modification does
Is 0x4064c5: | jmp 0x401000 not, intuitively, constitute code modification. Furthenmp
_ _ packers may rename sections arbitrarily, e.g. UPX-packed
Figure 1. Unpacker code for Hybris-C worm binaries typically have sections nameX0, UPX1, etc. It

may not even be possible to tell, by simple inspection, which

def deoloved by the bi Thi tak f sections contain executable code. ASPACK [2] changes the
etenses deployed Dy the binary. ThiS paper akes a 'r‘cffags in the section header table of the packed binary so

step in this diregtion by descr.ibing a genere}l ar!d aUtomat.i(fhat no section appears to be executable. For these reasons
approach to statically unpacking malware binaries. Itsnrmai we consider a more behavioral approach, where a location

contributions are as follows: is considered to be code if it is possible for execution to

1) It shows how well-understood program analyses caReach that location. As we will see, however, even this is
be used to identify whether a program may be self-gjfficult to identify statically, and we will have to resor t
modifying (which may indicate unpacking). conservative approximations.

2) For programs that are found to be possibly self- |, general, a program may modify its code in different
modifying, it shows how the code modification mecha-\yays and enter the modified code from different program
nism, i.e., the code that carries out the unpacking, capqints Figure 2 shows a simple example. Execution begins
be identified and used to unpack the binary withouty; piock B, and immediately checks to see whether it is
any prior knowledge about the packing algorithm usedy,ging monitored. If it is not, control falls through to the

3) It shows hov_v standard control an(_j_dat_a flow a”a|¥se§mpacker code in blocks, which unpacks the malware pay-
can be applied to this code modification mechanismgaq and branches to it. If monitoring is detected, however,
to find (and possibly neutralize) dynamic defensesconro| branches to block;, which overwrites the code in
tlme/!qgm bombs, etc. that activate the unpackingp|ocks By and B, with no-ops—thereby presumably cov-
conditionally. ering its tracks. Execution falls through the no-op seqeenc

Our approach is intended to complement — and not necesnto unrelated code following3,. In this example, there are
sarily replace — dynamic analysis techniques currentlgluseessentially two unpackers: the oneMa which unpacks the

by researchers for analyzing malware. code and branches to it, and the oneBa which hides

the malicious intent of the program and falls through to
the unrelated code. In general, there may be an arbitrary

Figure 1 shows an example of a simple unpacker, in thisjijumber. Thus, our approach focuses on identifying points

case for the Hybris-C email worm. Instructioig and I;  in the program where control can enter unpacked code, and
load registers with the size (5418 words) and start addresgeats the unpackers for each case separately.

(Ox401000) of the region to be unpacked. InstructiBn

loads the encryption keyl; through I iterate over each I1l. | DENTIEYING THE UNPACKER

word of the region, performing the decryption by means

of the subtract instruction, and rotating the key value with In order to carry out unpacking statically, we first have to
addition. When the value of th#edx register (the number identify the code in the packed binary that carries out un-
of words left to decrypt) is greater than zero, executionpacking. In order to do this, we have to be able to distinguish
jumps back tols;. At zero, it falls through and branches between the part of the malware’s execution when unpacking
to the unpacked code. Other unpackers may differ from thigs carried out from the part where it executes the unpacked
code in various aspects, but they all share the property thatode. This section discusses the essential semantic ideas
they modify memory to create new code that was not preseninderlying the notion of “transition points,” i.e., poinisthe

(in that form) in the original binary, then execute the codecode where execution transitions from unpacker code to the
so created. This observation forms the key to our approactnpacked code newly created by the unpacker. This notion
to static unpacking. of transition points underlies our approach to identifyamgl

Unfortunately, at the level of a program binary, code bytesextracting the unpacker code, which is then used to carry out

may be indistinguishable from data bytes. In some casesinpacking.

Il. BACKGROUND



The discussion in Section Il implies that it suffices, for our

purposes, to focus on an individual transition from ordynar B1| erase the code in
(i.e., unmodified) code to modified code. To this end, given  €ntry poin blocksB, and,
a programP, consider a trace of a single execution Bf
This consists of a sequence of staes- Sy, 51, ..., where i yes
each states; consists of) the contents of memory, denoted BT :
by Mem(S;);* and (ii) the value of the program counter, 0| is the program
denoted bypc(S;), specifying the location of the instruction being H}“O”'tore‘j?
to be executed next. At any statg, we can determine no
which memory locations (if any) have changed relative B }
to the previous state;_; by comparing Mem(S;) with 2 unpack malware
Mem(S;—1). This notion generalizes in a straightforward payload and
way to the set of memory locations modified over a sequence brancH to it
of states(S;, ..., S;), which we will denote by :
ModLocs((S;, - .., S;)) fall-through execu!ion\\ ved cod
We can divide the execution tra&into two phases: an gﬁéhBiﬁer erasure 0B unpacked co

initial unpacking phas8.,,,,q., followed by the subsequent

execution of unpacked cods.! Figure 2. A schematic of a program that can modify its codeiffierent

ways
S=250,.--,5, Skti,---,
—_——— —/ ———
Sunpack Sevee

to flow into unpacked code, and the set of memory locations

The boundary between these two phases is marked . ; :
the execution of a memory location that was modifieé%at get modified by the time control reaches this state.

earlier in the execution. ThUS ... begins (aNdSunpack For static analysis purposes, we consider the natu_rat_:statl
ends) at the first statéS;,; for which pc(Sipi;) € analogues for these. Reasoning analogously to the distinct
ModLocs((So, ..., Sk)); if no suchSj4, exists, no unpack- betweerS ;.. andS.,.. above, we find a pair of locations
ing has taken place on this execution. If we assume complet@’ ') such that control can go froito ¢, and¢’ may have

knowledge about the tracg, we can give an idealized e mogified earlier in the execution. We refer to such pairs
definition of the set of unpacked location8,L;4eq;, as . o
as transition points:

those locations iMfodLocs(Sunpack) that are subsequently e N o )
executed: Definition 3.1: Atransition pointin a program P is a

pair of locations(¢, ¢’) satisfying the following:

ULidwl(S) = MOdLOCS(SmLpaCk) M {pC(SZ) | S € Sczcc}. i . i i
1) ¢ is not modified during the execution 6f

In practice, of course, we do not haagriori knowledge of 2) there is an execution path from the entry point/f
the set of locations that will be executed after unpacking (i to the point/ along which?’ may be modified; and
fact, until unpacking has been carried out, we do not even 3) the next instruction to be executed affemay be at
know which locationscould be executed after unpacking). /.

We therefore use the set of memory locations modified dur-
ing the unpacking phase up to the point where control enter
an unpacked location, i.e., the setddbdLocs (Sunpack). @S a
conservative approximation to the idealized set of unpdcke
locationsUL;4..:(S). We then define the dynamic unpacker
Up for the traceS—i.e., the code that actually carries
out the memory modifications in the unpacking phase o
this trace—to be the fragment of the progrdMmthat was
executed duringS,p.cx and which could have affected
the value of some location idfodLocs(Sunpack). This is

ﬁnuitively, a transition poin{¢, ¢’) gives a static characteri-
zation of the point where control goes from the unpacker to
the unpacked codé:corresponds to the program counter in
Sk, the last state in the unpacking ph&sg,,.. in the trace
Eshown above, whil¢’ corresponds to the program counter
n Si+1, the first state of the unpacked code execution phase
exec+
Given a transition point for a programP, let Mods(t)
. oo . denote (an upper approximation to) the set of memor
nothing but the dynamic slice af for the set of locations : ( PP pproxirt ) ) M
. locations that may be modified along execution paths from
ModLocs(Sunpack) @and the execution trac®,,pqck - . :
. . . . the entry point of the program ta We definel(s(t), the
There are two key pieces of information used to define_, _.. . ;
. ) . static unpacker fot, to be the static backward slice &f
the dynamic unpacker here: the state where control is abOLth . : X
rom the program point with respect to the set of locations
1For simplicity of discussion, we consider registers to beecil part Mods(t), i.e., the set of instructions whose execution could

of memory. possibly affect any of the locations iWods ().



The remainder of this paper focuses on how, given an  define the unpacking parameters do not dominate the
executable program?, we identify the set of static unpackers unpacker code.
for it and use them to carry out unpacking statically. In the first case, since the unpacker code does not post-
dominate the conditional braneh, control may or may not
) ) ) _reach the unpacker at runtime depending on the outcome
As mentioned earlier, one of the drawbacks with dynamicst | the second case, since the instructions defining
analysis of malware binaries is that it allows the malwarey,q unpacking parameters do not dominate the unpacker,
to deploy dynamic defenses. Examples of such defenses ijiferent execution paths can assign different valuesiese

clude anti-debugging code, which attempt to detect whetheg, ameters. Note that in both cases these are necessary but

the program’s execution is being monitored; time bombsyq gy fficient conditions (the usual undecidability resr
which cause the malware to be activated only at certain timeg;;ic analysis make it difficult to give nontrivial sufficie

or dates; and logic bombs, which activate the malware UPORonditions).

the detection of some environmental trigger. It turns out that a data-based dynamic defense can be
We can classify dynamic defenses into three categoriegyansformed to a control-based one using a code transfor-

whose conceptual structures are shown in Figure 3. Here, th@ation known agail duplication Fom the perspective of
variablesrc refers to the packed code. The first kind, showng;atic unpacking, therefore, data-based dynamic defeases

in Figure 3(a), isimple here, the dynamic defense predicatee handled by transforming them to control-based defenses
is executed after the malicious code has been unpackednq then handling these as discussed in Section V-B2. The

The second kind, shown in Figure 3(b), éentrol-based  remainder of this paper therefore focuses on dealing with
here the dynamic defense predicate is executed first, anghnirol-based dynamic defenses.

the unpacker is invoked conditionally based on the outcome \y/hije dynamic defenses can be detected as discussed
of this t(_ast. The\N32.Divinorumviru§ attempts to use such above, in general they cannot always be completely elim-
a technique [15] (though a bug in the code renders thyated while preserving the unpacking behavior. To see this
defense ineffective). Finally, Figure 3(c) shodata-based  consider the situation where an external input is read in and
dynamic defensevhose effect is to pass different values to ,geq as a password and also as a decryption key: in this
the unpacker based on the outcome of the test. As a resuflgge, eliminating the dynamic defense would be equivalent
the outcome of unpacking is different based on whether ofy aytomatically guessing the password. However, autemati
not the dynamic defense predicate is true. _elimination of dynamic defenses may be possible if the value
Many of the dynamic defenses currently encountered ifpat is tested in the dynamic defense predicate is unrelated
malware use the simple defense shown in Figure 3(a). EXisty the decryption key(s) used for unpacking (here, the two
ing emulation-based techniques are sufficient to identi®/ t 5.6 considered to be “related” if there is some valuguch
malware in this case, since the malicious code is matee@liz hat for some functiong and g, the valuef(v) is used
?n_unpacked form in memory regardless _of whether or noty, the dynamic defense predicate antb) is used as an
it is executed. We therefore do not consider such defens%packing key). This is usually true of malware code, where
further. Howevercontrol-basedand data-basednay cause  the dynamic defense is related to some aspect of the external
a dynamic analyzer to miss, or incorrectly unpack, th€enyironment, e.g., execution under the control of a debugge
true malware, thus leading to tedious and time-consuming in a virtual machine, while the unpacking key is typically

IV. HANDLING DYNAMIC DEFENSES

manual intervention. stored within the program executable itself.
Using static analysis, we can use the control-flow structure
of the malware code to detect dynamic defenses. To this end, V. OUR APPROACH

we recall the notions of dominators and post-dominators The overall organization of our static unpacker is as
from static control-flow analysis [16]. Given two basic follows:

blocks B and B’ in the control flow graph of a program 1) Djsassembly and control flow analysRead in the

P, B dominatesB’ if every execution path from the entry input binary and use information about the program
point of P to B’ goes throughB. B post-dominates3’ if entry point (found in the file header) to obtain an initial
every execution path fron’ to the exit node off” passes disassembly of the binary. We perform control flow
through B. We can use these notions to identify dynamic analysis using standard techniques to identify basic
defenses, as follows: blocks and construct the control flow graph of the
« Control-based defenses: disassembled code [16].
Unpacking is control-dependent on a conditional branch 2) Alias analysis.Perform binary-level alias analysis to
C if the unpacker code is reachable frathbut does determine the possible target addresses of indirect
not post-dominat&”. memory operations in the disassembled code. Our
o Data-based defenses: current implementation uses the value-set analysis

Unpacking is data-dependent if the instructions that described by Balakrishnan [17], [18].



I

¢ ¢ today() == "Fri 13th"?

src = &malicious code today() == "Fri 13th"? N v
Unpack(src)
¢ /V \ src = &harmless codg src = &malicious co

=="Frj "2 exit N 7
today() Fri 13th"7 src = &malicious code
Unpack(src)
M \ ¢ Unpack(src)

exit unpacked cod unpacked code ﬁi

unpacked code

(a) simple (b) control-based (c) data-based

Figure 3. Different kinds of dynamic defenses

3) Potential Transition point identificatiobse the results {a} i ‘; Ilf) faggr?? write to
of alias analysis to identify potential transition points write(I) = { alias(r) if T is an indirect write
i.e., points where control may be transferred to un- throughr;
packed code (see Definition 3.1). We refer to these as 0 otherwise.
“potential” because imprecision in the alias analysis {a} if I is a direct control
may identify some locations as possible transition _ _ transfer to a locatiom;
points even though in reality they are not. net(I) = alias(r) i Itr'znas?e?g::gﬁ;ﬁ?_mml
4) Static unpacker extractioRor each potential transition {addr(I')} otherwise, wherd’ follows
point ¢ identified above, we use the results of alias T in the instruction
analysis to determine the set of memory locations that sequence.

may be modified along execution pathsttcand use We next identify potential transition points, which indiea
backward static slicing on this to identify the static points where control may go from the unpacker into the
unpackei/s (t). unpacked code (i.e., modified locations). More formallg th
5) Static unpacker transformatioXarious analyses and idea is to collect all instructiong such that there is some
transformations are applied to the unpadiert), ex- instruction.J that can modify some location inexzt(I) and
tracted in the previous step, to enable it to be executevhere there is a control flow path frothto 7. Imprecision
as part of a static unpacking tool. These include thdn the alias analysis will lead to multiple potential traisi
detection and elimination of dynamic defenses thatpoints. We extract and execute a slice for each one to igentif
effect control-dependent unpacking, as well as addrestue transition points.
translation and code change monitoring.
6) Finally, the transformed code is invoked to effect
unpacking.

B. Static Unpacker Extraction

Once potential transition points have been identified as
described above, we process each transition pointturn
and extract the corresponding unpackgi(t). To this end,
let epdenote the entry point of the program (i.e., instruction

As outlined above, we begin by disassembling the binaryseéguence)P’ under consideration, and define the set of
then carrying out alias analysis for all indirect memory: ref memory locationsi/ods(t) that may be modified along some
erences (the targets of direct references are readily appar €xecution path leading toas follows:
and do not need additional analysis). Given the aliasing  Mods(t) = U{write(I) | I € P is reachable fronep
information, for each instructiod we compute two sets: andt is reachable fron'}.
write(I), the set of memory locations that may be written The unpackeri{s(t) associated with is then computed
to by I; and next(I), the set of locations that control may as the backward static slice of the program fremvith
go to after the execution of. These sets are computed respect to the set of locatiordgods(t). Note that because of
as follows, with alias(x) denoting the possible aliases of the unstructured nature of machine code, slicing algosthm
a memory reference: devised for structured programs will not work; we use

A. Potential Transition Point Identification



an algorithm, due to Harman and Danicic, intended for i
unstructured programs [19]. Since the computation of this BO
slice considers all of the memory locations that can be today() == date1?
modified in any execution from the entry point of the

program up to the point, most of the code in the initial /
N Y

disassembly is usually included; however, obfuscatiorecod
that is dead or which has no effect on any memory location
will be excluded.

Once identified, we want use the unpacker to unpack
the code. However, in its raw form it is not suitable for
execution. For example, virtual addresses in the code will n y %
point to their intended locations since the unpacker will be
loaded into allocated memory on the heap. Additionally, any exit B2
dynamic defenses will still be included and may disrupt the
unpacking process. Our next step, therefore, if to transfor
the code to a form suitable for execution using the following ¢
transformations.

1) Instruction Simplification:The Intel x86 architecture unpacked code
(targeted by a great deal of malware because of its ubiquity)
has a number of instructions with complex semantics and/or Figure 4. A dynamic defense with a compound predicate
ad hocrestrictions. The simplification step rewrites such
instructions, which are difficult to handle during the addre
translation step (Section V-B3), to an equivalent sequence  €dges ofJ, J is left unchanged.

Bl
today() == date2?

src = &malicious code
Unpack(src)

of simpler instructions. This process is repeated until there is no further change to
As an example, theepZrepnzprefixes on certain string the slice.

instructions cause repeated execution of the instruclibe. The first two cases above are fairly obvious. To see the

effect of the prefix is to decrement tB@cx register, then— need for the third case, consider Figure 4, which modifies

depending on the prefix, the value ##cx, and the result the code in Figure 3(b) so that the unpacker now runs on
of the last comparison operation in the string instruction—two different days. In this case, suppose that bldtk
either repeat the execution of the string instruction, seel is processed first by our algorithm. The unpacker code is
exit the repetition. The problem here is that the side effecteachable from both itfue andfalse branches of this test,
of therepz/repnzrefix on the¥ecx register interferes with  so the test is left unchanged (case 3 above). BlBdk
register save/restore operations in the address traomslatiis processed next, and case 1 is found to apply, so the
step. We address this by replacing thepz/repnzprefix  conditional branch inB1 is replaced by an unconditional
with explicit arithmetic on théecx register together with a  jump to B2. In the next iteration, we consider blod0
conditional jump that reexecutes the string instructiorewh again, and again find that the unpacker codeBid is
necessary. reachable along both theue andfalse edges out oB0, so

2) Dynamic Defense EliminationAs mentioned in Sec- there is no change to the slice, and the algorithm terminates
tion IV, data-based dynamic defenses can be transformed tgotice that in this example, even though the test in block
control-based ones in a straightforward way, so it sufficeB0 remains as part of the slice, the dynamic defense has
to deal with control-based dynamic defenses. We do this asffectively been disabled: control goes to the unpackeecod
follows. After the slice{s(t) has been constructed, we check regardless of the outcome of this test.
each conditional branch that is in the slice to see whether it As noted earlier in Section 1V, it may not be possible
might be a dynamic defense test. For each such brainch to eliminate a dynamic defense if the value tested in the
we check to see whether there is some instrucfion the  defense predicate is related to a value used for unpacking.
slice that does not post-dominafe If this is the case, we We can identify this situation by examining data dependency

transform the code as follows: relationships in the slice code.
1) if the slice is reachable along tltrie edge ofJ but 3) Sandboxing:Once dynamic defenses have been elim-
not along thefalseedge, we “unconditionalizeJ, i.e.,  inated, we further transform the code to ensure that memory
replaceJ by a direct jump to the target af; accesses are handled correctly. There are two components to

2) if the slice is reachable along tifi@seedge ofJ (i.e.,  this: address translationwhich redirects accesses to global
along the fall-through) but not along theie edge, we  memory regions (code and static data) to the appropriate
remove.J; locations; andstack shadowingwhich deals with stack

3) if the slice is reachable along both tiree andfalse  accesses from the malware code.



I. Address TranslationThe need for address translation handled as follows. If it is a direct call and the target is
arises out of the fact that the runtime unpacking of awithin the unpacker slice, it is rewritten to transfer cantr
malware binary takes place within an executing malwargio the appropriate instruction within the slice. If it is an
file, while in our static unpacking tool it occurs within a indirect call, we instrument the code with a call to a handler
tool where each section comprising a malware binary igoutine. At runtime, the call handler first tries to deterein
represented as a dynamically-allocated data object. Eadhthe call target is within the slice. If it is, it translateése
such object—which we refer to as arobject(for “section  address and returns it. The returned value is substituted fo
object”)—contains meta-data about the section it repitasen the original value, and the call instruction is executedh#
such as its name, size, virtual address, etc., as well as tharget is not in the slice, the call handler assumes theall i
actual byte sequence of the contents of the section (whelérary call. In this case, if the tool is running undeygwin
appropriate). These section meta-data are obtained frem th{a Unix-like environment within Microsoft Windows), and
section header table of the binary. Because of these differethe target is one of the set of wrapper routines we have
representations, memory references in the unpacking codaeated, the wrapper library routine is called; otherwise w
Us(t)—which refer to virtual addresses in the malwareskip the call instruction.

binary, e.g.,0x401000 for the Hybris code of Figure 1— Il. Stack ShadowingThere are two main reasons we
have to be translated to addresses that refer to s-objects must explicitly handle stack accesses. First, correctiexec
the static unpacker’'s memory. tion of the program may depend on values on, or below,

We achieve this translation by traversing the instructionthe stack. For example, theeed-44trojan uses an offset
sequence resulting from the instruction simplificatiorpste from the stack pointer to reach below the stack to the
discussed in the previous section. For each instructioh tha'hread Execution Block (TEB) to access a value that is
accesses memory (except those that access through the starded to carry out the unpacking (the TEB is actually stored
pointer), the following instrumentation and transforroati  in higher addresses, but we say “below” because the stack
is performed. First, a new instruction is added that cal-grows towards lower address values.) Second, it is negessar
culates the virtual address used by the original instructo protect the static unpacker’s runtime stack should the
tion and stores the result in a registey. The function malware try to write garbage to it or use the stack in an
VirtualAddr2UnpackerAdd) is called with the value in unpredictable way. For example, tlRustock.Cunpacker
as a parameter, and returns the value of the correspondinges a number opush and pop instructions to obfuscate
address in static unpacker memory. The return value isétorats code; at runtime, this has the effect of writing garbage
back into some register; (it could berq, but doesn’t have onto the stack.
to be), and the original instruction is transformed so that We handle these issues by allocating a region of memory,
it accesses memory indirectly through. Finally, instru-  called theshadow stack regigrthat holds the contents of two
mentation code is added before and after these instructioredntiguous memory areas from the malware code’s exectuion
that save and restore the values of all registers as needeshvironment: its runtime stack and its TEB. The stack area of
Thus, the correct memory location is used by the originathe shadow stack region grows from high to low addresses,
instruction, and the instruction acts on the current mazhinsimilar to the actual runtime stack; the address of its top
state. The implementation dfirtualAddr2UnpackerAddy  is recorded in a global variable, trehadow stack pointer
is straight forward. We note that virtual address space $ormWe locate the our TEB just below the stack, as is done
a contiguous block of memory addresses starting with thén Windows. Memory within the TEB area of this region,
base address as given in the file header. Our static unpackas well as the shadow stack pointer, are initialized with
memory likewise forms a contiguous block of memory of thevalues one would expect when a Windows process begins
same size with a known start address, thus there is a one-texecution. Additionally, code is added to slige so that the
one correspondence between virtual addresses and unpackentime stack and shadow stack are switched immediately
addresses. Translation, then, amounts to calculating thieefore each instruction and switched back immediately afte
offset of the virtual address from the file header base addresthe instruction.
and adding that offset to the start of the unpacker memory - ) )
space. This approach also allows us to identify attempts t&+ Transition Point Detection
access memory outside of the program address space. As mentioned above, not all potential transition points

To deal with calls to library routines, we use a set ofare actual transition points. We can test for actual traomsit
“wrapper” routines we have created for commonly-usedpoints as follows. Execution of the static unpacker acts
library functions. At program startup, we construct our ownon and records changes to our own copy of the program
version of the executable’s Import Address Table (IAT) andmemory M. Before execution, we create a read-only copy
build a mapping from these IAT functions and addresses t@f memory M’. Further, we instrument the slice code so
our known wrapper functions and addresses. This mappinthat before each instruction is executed, we can compare the
is maintained as a global data structure. Function calls areontents of the current memory to the contents of the origina



memory at the address of the instruction. If these contentthat may write to memory under different conditior{s)
have changed, then the instruction has been modified, antextPad is not a malicious file, but we packed it with
we stop execution of the unpacker, otherwise we continueElock a program often used to hide malwatElock uses
This approach assumes that given a transition p@int’) the aam instruction, which ordinarily adjusts the result of
there is an instruction at both of the addresgeand ¢'. multiplication between two unpacked BCD values. Here,
This may not be true, e.g. if the packed bytestoflid not it has the effect of an implicit decryption ketElock also
disassemble to a legal instruction. In this case, we can addses several anti-disassembly tricks such as jumping o t
nop instructions as need to potential targets. middle of instructions, near calls to load a value on thekstac
L andint $0x20 instructions that appear to be in the control
D. Putting it all together flow, but never execute. For all the files above, our approach
Once the slice code has been generated, transformed agdes not require knowledge of the unpacking algorithm. It
instrumented as described above, we add wrapper codshly needs to identify the correct slice.
around it to save the appropriate components of program gigyre 5 summarizes the results of our experiments. These

state on entry (e.g., stack and frame pointers, flags) angympers were obtained as follows:
restore this state prior to exit. The resulting instruction

sequence is then run through an assembler that traverses thel) We dump the program's memory imagg.;, at the
list of instructions and emits machine code into a buffer point where it begins execution. We execute the code

allocated for this purpose. A driver routine in our static in a debugger, setting a break point at ”'19 first un-
unpacker then executes a function call to the beginning  Packed instruction, and dump the program’s unpacked

of this buffer to effect unpacking; control returns from memory imageP.,,p. The size of this unpacked
the buffer to the code that invoked it once unpacking is image| Punpp |, is reported in column 1 of Figure
complete. S

2) Column 2 gives the number of bytes unpackeég,,,,
calculated as the number bytes that differ between
Porig and PunpD-

We run our static unpacker on a file, and if it finds that
a potential transition point is a true transition point, it
dumps the memory image. We denote tRis,,s. The
value of A given in column 3 is the number of bytes

If a slice completes execution without finding a transition
point, it returns control to the driver routine. The drivheh
restores the contents of malware memafyfrom the read-
only copy M’, and executes the next slice. )

After the malware binary has been unpacked in this
fashion, we still have to extract the resulting unpacked
code. Since we know the transition point for the unpacker, :
i.e., the address of the unpacked code, we can do this by  WherePun,p and Py, differ. _ _
disassembling the code starting at this address. Theirggult = 4) Column 4 gives the accuracy of static unpacking,
disassembled unpacked code can then be processed using ©XPressed as the percentage of bytes wiitrgs and
standard control and data flow analyses. Punpp agree.

For all programs in Figure 5 , we have verified that the
) . differences betweerP,,,s and P,,,p are the result of
A. Static Unpacking differences in program metadata, specifically entries & th

To evaluate the efficacy of our ideas, we implementedmport Address Table, and not the bytes that are actually
a prototype static unpacker and tested it on five files -being unpacked. (The IAT is a section of a file used to deal
four viruses, and one non-malicious program packed withwith the invocation of dynamically-linked library routiag
a common packer(i) Hybris-C uses a single arithmetic Rustockioads no functions from external .dll fileblybris-
decryption operation where the decryption key is changed loads one functionPeed-44loads six functions, and
via a rotation at each iteration of the unpacking routinetElock loads two. The differences for these files are the
(#i) Trojan.Peed-44looks into the TEB to get the value result of the four byte addresses of these functions not
to the top of the SEH chain. Since it has not loaded anyetting loaded into the IAT by our static unpacker. The
exception handlers, this value will bel if it is running  case ofMydoomis similar. UPX-packed binaries have two
natively. It uses this value to calculate the start addréss cseparate parts to the unpacker. First, original prograrasbyt
the unpacking, then iterates through addresses and perforrare uncompressed and loaded into memory. Second, the list
a series of bit shifting and arithmetic on ea¢h:) Rustock of imported functions is unpacked and the IAT is rebuilt
rootkit uses two sequential decryptor loops that operate omanually. We have confirmed through manual analysis that
the same memory. Additionally, more than three quarters othe 2,708 bytes that differ faMlydoomall result from this
its unpacker instructions are obfuscation code that perfor second step. The results of Figure 5 represent a single phase
various memory and stack operations which have no effecbf unpacking. We do not handle cases where multiple phases,
(iv) Mydoomis packed with commercial packer UPX, and e.g. malware packed multiple times, are required to fully
has a fairly elaborate algorithm consisting of nested loopsinpack the original binary. This case is left for future work

VI. EXPERIMENTAL RESULTS



Memory image size Bytes unpacked Memory difference % correct
Program | PunpD | (bytes) Nunp A (bytes) 1- A/lpunpD|
Hybris-C 28,672 21,576 4 99.99
Mydoom.q 73,728 57,367 2,708 96.33
Peed-44 151,552 1,872 48 99.97
Rustock.C 69,632 22,145 0 100.0
tElock 1,974,272 6,140 8 99.99

Figure 5. Experimental results: static unpacking

B. Handling Dynamic Defenses This customized unpacker can then be executed or emulated

To evaluate the detection of dynamic defenses, we conlo obtain the unpacked malware code. Our approach doe_s not
structed several variants of thiybris program incorporating Presuppose any knowledge about the software or algorithm
various control-based dynamic defenses. We varied the-struUS€d to create the packed binary. Preliminary results from
ture of the code so that, for different variants, the dynamic® Prototype implementation suggest that our approach can
defense code appeared above, or below, or intermixed witgffectively unpack a variety of packed malware, including
the actual unpacker code. In each case, the static unpacke®mMe constructed using custom packers and some obtained
was able to successfully identify and eliminate the dynami¢!Sing commercial binary packing tools.

defense code.
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